A Crystal Plasticity Finite Element—Machine Learning Combined Approach for Phase Transformation Prediction in High Entropy Alloy

Author:

Soltani Mehrzad1ORCID,Ferdousi Sanjida1ORCID,Haridas Ravi Sankar12ORCID,Mishra Rajiv S.23ORCID,Jiang Yijie1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of North Texas, 3940 N Elm St, Denton, Texas 76207, USA

2. Advanced Materials and Manufacturing Process Institute, University of North Texas, 3940 N Elm St, Denton, Texas 76207, USA

3. Department of Material Science and Engineering, University of North Texas, 3940 N Elm St, Denton, Texas 76207, USA

Abstract

The mechanical properties of an alloy depend on its microstructure. The strength-ductility trade-off is a paradigm that existed for a long time. Advanced alloys, such as high entropy alloys (HEAs), utilize a dual-phase strengthening mechanism, which originates from the microstructural phenomena consisting of twinning and phase transformation, to significantly improve their mechanical properties. To understand the impact of phase transformation mechanism on stress–strain response, developments of crystal plasticity finite element models (CPFEM) and machine learning (ML) together with experimental methods have potential to capture the relationships between descriptive features and targeted phenomena. Here, ML models on local crystallography, local stresses, and energy-based driving forces are leveraged for phase transformation prediction in a HEA. The ML model (XGBoost classification model) uses a hybrid training data combining electron backscatter diffraction (EBSD) experimental data and CPFEM simulation results. This approach enhances prediction performance at optimum data sizes. This predictive model is implemented in multiple experimental measurements to validate our models and evaluates importance of different physical quantities on phase transformation phenomenon. The prediction accuracy reached over 95% compared to experimental data. The CPFEM-ML framework used in this study is expected to be applicable to other HEA systems to facilitate the understanding and prediction of the phase transformation.

Funder

U. S. Army Research Laboratory

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3