Affiliation:
1. School of Engineering, Ferdowsi University of Mashhad, Iran
Abstract
In this study, an efficient triangular element for the fast nonlinear analysis of moderately thick Mindlin–Reissner plates is proposed. The element is formulated using a newly developed method, which is based on the assumed natural strain concept, and called Continuously Variable Strain (CVS). The continuous higher-order strain field is proposed by using the fundamental lemma of the variational calculus. Furthermore, the updated Lagrangian tensor together with rigid body terms is employed allowing for large deformations. The proposed element (CVST10), which is obtained by minimizing the total potential energy, has only 10 degrees of freedom and demonstrates high-efficiency and fast convergence rate in analysis of problems with coarse and distorted meshes. The arc-length iterative technique is applied to handle the geometrically post-buckling behavior of homogeneous plates under various load and boundary conditions. Various numerical examples prove the accuracy of the proposed element.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献