Nonlinear Deformation and Numerical Post-Buckling Analysis of Plate Structures Using the Assumed Natural Strain Concept

Author:

Rezaiee-Pajand Mohammad1,Ramezani Mohammadreza1ORCID

Affiliation:

1. School of Engineering, Ferdowsi University of Mashhad, Iran

Abstract

In this study, an efficient triangular element for the fast nonlinear analysis of moderately thick Mindlin–Reissner plates is proposed. The element is formulated using a newly developed method, which is based on the assumed natural strain concept, and called Continuously Variable Strain (CVS). The continuous higher-order strain field is proposed by using the fundamental lemma of the variational calculus. Furthermore, the updated Lagrangian tensor together with rigid body terms is employed allowing for large deformations. The proposed element (CVST10), which is obtained by minimizing the total potential energy, has only 10 degrees of freedom and demonstrates high-efficiency and fast convergence rate in analysis of problems with coarse and distorted meshes. The arc-length iterative technique is applied to handle the geometrically post-buckling behavior of homogeneous plates under various load and boundary conditions. Various numerical examples prove the accuracy of the proposed element.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3