Numerical Analysis of the Structural Stability of Ideal (Defect-Free) and Structurally and Morphologically Degenerated Homogeneous, Linearly- and Angle-Adjoined Nanotubes and Cylindrical Fullerenes Under Axial Loading Using Finite Element Method

Author:

Yengejeh Sadegh Imani12,Öchsner Andreas3,Kazemi Seyedeh Alieh4,Rybachuk Maksym25

Affiliation:

1. Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Southport 4222, Australia

2. Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia

3. Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen 73728, Germany

4. Department of Mechanical Engineering, The University of Birjand, South Khorasan Province, Birjand, A78, 97175615, Iran

5. School of Engineering, Griffith University, Southport, QLD 4222, Australia

Abstract

We report on the structural stability of ideal (defect-free) and structurally and morphologically degenerate carbon nanotubes and nanotube junction systems under axial loading based on the finite element method. We estimated the values for critical buckling load for uncapped and capped single-walled carbon nanotubes (SWCNTs) and linear and angle-adjoined SWCNT heterojunctions in ideal and structurally degenerate systems containing single-, double-, triple-, pinhole- and pentagon–heptagon (i.e., 5–7) structural defects and also containing a substitutional nitrogen (N) atom inclusion under compressive loading. Absolute atomic vacancy (defect) concentration in studied SWCNTs models was assumed to be nil for ideal systems, and was up to 3.0 at.% for structurally and morphologically degenerate systems. It was found that all types of structural defects and the morphological N-defect had reduced the load carrying capacity and mechanical strength in all SWCNT systems studied. The SWCNT models containing physically large vacant sites, such as triple- and pinhole-defects, displayed significantly lower critical load values compared to the systems that contained only a single-, double- or triple-vacancies. In addition, we found that capped SWCNTs performed marginally better in critical load carrying capacity compared to uncapped SWCNT systems. Furthermore, majority of the investigated structures displayed reduced load in SWCNTs with narrower tube widths, proportional to the size and the type of the defect investigated. The effects of chirality, such as zigzag- versus armchair-type, on the structural stability of the investigated SWCNT models were also investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3