Robust Topology Optimization of Coated Structures with Surface Layer Thickness Uncertainty Considered

Author:

Li Ran1,Hu Jingyu1,Liu Shutian1ORCID

Affiliation:

1. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China

Abstract

The rapid development of additive manufacturing has made coated structures an innovative configuration with high design flexibility. However, poor forming accuracy and surface roughness during manufacturing will cause uncertainty in surface layer thickness, which results in structure performance deviation and failure to achieve the expected goals. This paper proposes a robust topology optimization method for coated structures considering the surface layer thickness uncertainty to obtain high-quality designs that can resist disturbance by uncertainties. First, an erosion-based approach is used to establish the model of the coated structure surface layer. Second, modeling the surface layer thickness uncertainty applies a random field whose dimensionality of the random fields is reduced by the Expansion Optimal Linear Estimation (EOLE) method. Then, minimizing the weighted sum of the mean and standard deviation of structural compliance is taken as the optimization objective, and robust topology optimization considering uncertainty is established. Finally, estimate the stochastic response by the perturbation technique, then the sensitivity of the objective function with respect to the design variables is derived. Numerical examples show that the structural design obtained with the proposed method has a stronger resistance to uncertainty than the deterministic topology optimization method, proving the method’s effectiveness in this paper.

Funder

National Natural Science Foundation of China

The 111 Project

Fundamental Research Funds for the Central Universities of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3