Analytical Primary Resonance of Size-Dependent Electrostatically Actuated Nanoresonator Under the Effects of Surface Energy and Casmir Force

Author:

Rahmanian Sasan1,Hosseini-Hashemi Shahrokh1,Ghazavi Mohammad-Reza2

Affiliation:

1. School of Mechanics Engineering, Iran University of Science and Technology, Hengam St, Narmak, Tehran, 16846-13114, Iran

2. Mechanical Engineering Department, School of Engineering, Tarbiat Modares University, Nasr Bridge, Jalal Ale-Ahmad St, Tehran, Iran

Abstract

This paper investigates the nonlinear vibration of a size-dependent doubly clamped nanoresonator based on modified indeterminate couple-stress theory and Euler–Bernoulli beam theory. Surface effects, dispersion Casimir force, and fringing field effects are considered in the nonlinear model. The electrostatic actuation is a combination of DC and AC voltages and imposed on the nanobeam through one electrode. The governing differential equation of motion is derived using the extended Hamilton’s principle and discretized to a nonlinear ODE using Galerkin’s procedure. The multiple time scale method is applied to the reduced-order model in order to obtain the nanobeam frequency-response curves analytically under small AC voltage loads. The influences of the mentioned parameters are investigated on the primary resonance characteristics of the nanoresonator. It is shown that the application of non-classical continuum theory results in a softening effect on the dynamic response of the system near primary resonance. Moreover, it is concluded that the influence of surface energy on the system dynamic behavior depends on the value of DC voltage load.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3