Experimental Investigation of Heat Flux Characteristics on the Thermally Induced Vibration of a Slender Thin-Walled Beam

Author:

Fan Chao12,Bi Yanqiang1,Wang Jing12,Liu Guoqing12,Xiang Zhihai3

Affiliation:

1. Beijing Institute of Spacecraft Environment Engineering, Haidian District, Beijing 100084, P. R. China

2. National Key Laboratory of Science and Technology on Reliability and Environmental Engineering, Haidian District, Beijing 100084, P. R. China

3. Department of Engineering Mechanics, Tsinghua University, Haidian District, Beijing 100084, P. R. China

Abstract

The spacecraft with large flexible space structures may be subject to the thermally induced vibration (TIV) due to the rapidly changed solar heat flux when it enters and leaves the eclipse, which would lead to certain spacecraft failure. This paper reports a laboratory experiment that aims to study the impact of transient characteristics of heat flux on the ground experiment of TIV. In the experiments on the TIV of a slender thin-walled beam, two different methods of providing transient heat flux were considered, and the process of entering and leaving eclipse was simulated, respectively. The experimental results demonstrate that different transient characteristics of heat flux will have large impact on the TIV of the specimen, and the ideal theoretical estimation of thermal characteristic time has limitations in practical engineering. In addition, it is found that the traditional way of simulating solar heat flux by turning on/off infrared heat lamps is not suitable for the TIV ground experiment. Instead, a transient heat flux simulation method by moving the baffle is recommended.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3