Fourier Decomposition and Anisotropic Diffusion Filtering of Forced Turbulence

Author:

Abdel Kareem Waleed1,Abdel Aty Mahmoud2,Asker Zafer M.1

Affiliation:

1. Faculty of Science, Department of Mathematics and Computer Science, Suez University, Suez, Egypt

2. Faculty of Science, Department of Mathematics, Benha University, Benha, Egypt

Abstract

The Fourier decomposition and the anisotropic diffusion filtering model are used to extract various flow field scales and their coherent and incoherent parts. The different flow field scales are identified using the Fourier decomposition. Three cutoff wavenumbers are chosen to extract large, medium and fine scale velocity fields, respectively. Then, the anisotropic diffusion model is applied against the obtained velocity fields for each scale to define the coherent and incoherent parts. The forced turbulent velocities are simulated using the lattice Boltzmann method with resolutions [Formula: see text] and [Formula: see text], respectively. The Fourier decomposition of the velocity fields make the filtering process very difficult, so the anisotropic diffusion parameters should be chosen carefully to overcome the problems arising from the sharp cutoffs process. Although of such difficulties, results show that the anisotropic diffusion model successfully isolate the incoherent parts for each scale. It is shown that the incoherent parts are existed everywhere in the flow fields and they are not limited to the fine scales. The coherent fields that are identified by the anisotropic diffusion filtering method are found similar to the extracted scales by the Fourier decomposition. The incoherent regions are fewer in the large scale fields compared with that found in the intermediate and fine fields. The statistical characteristics of the three flow field scales as well as their coherent and incoherent parts are studied and compared with the universal characteristics of turbulence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3