A Study on Effective Compressive and Shear Properties of Tetrahedral Lattice Materials

Author:

Liu Hui1,Long Lianchun1ORCID

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

Tetrahedral lattice materials can be used as the core of a sandwich structure. The properties of tetrahedral lattice materials can be controlled by modifying their geometrical parameters and relative density. In this paper, a tetrahedral lattice structure deformation mechanism-based theoretical analysis model is established to predict the effective mechanical properties of the structure under compressive and shear loadings. The analytical solutions are subsequently verified by finite element analysis of a large-scale lattice material model. Based on the obtained results, the effects of the geometrical parameters, relative density, and shear deformation are discussed. At a specific relative density, as strut inclination angle increases: (1) the effective compressive modulus in the z-direction increases; (2) the effective compressive modulus in x- and y-directions, and the effective shear modulus in xy-, xz-, and yz-directions firstly increases but then decreases; (3) the effective Poisson’s ratios [Formula: see text] and [Formula: see text] increase, whereas, [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] decrease. With an increase in relative density, the effective compressive and shearing modulus increase, the effective Poisson’s ratios remain constant, [Formula: see text] and [Formula: see text] are always equal to 0 when the strut inclination angle is [Formula: see text]. The effect of shear deformation on the effective mechanical properties increases as the slenderness ratio increases. The predicted effective properties enable the tetrahedral lattice unit cells to be treated as “material” in the design and analysis process.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3