On the Design of Cylindrical Magnetorheological Clutches

Author:

Akbari E.1,Khajehsaeid H.2ORCID,Asiaban R.1

Affiliation:

1. The Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2. WMG, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

Magnetorheological fluids (MRFs) exhibit variable mechanical properties in response to magnetic stimuli. Thanks to their rapid and reversible viscosity changes, MRFs can be utilized in a variety of applications including torque transmission devices such as clutches. In this work, the geometrical design of cylindrical MR clutches is investigated with the aim of optimizing the torque transmission capability. Effects of design parameters such as radius, gap size, effective length, and MRF volume are investigated in the presence of variable magnetic field. Magneto-mechanical behavior of some MR fluids with different particle content are investigated by means of two different constitutive models to simulate the clutch performance in a range of geometrical parameters. It is shown that the transmitted torque increases nonlinearly by inner radius of the clutch, for example, in the studied range, 150% higher torque is achieved for only 40% larger radius. The clutch’s gap size does not much affect the torque, however, since it significantly affects the required volume of MRF, a lower gap size is favorable. The torque is also calculated for constant volumes of the MRFs. At a certain volume, although a higher radius translates to a shorter length, it is still favorable. For example, a 40% increase in the design radius, almost doubles the transmitted torque for both the studied MRFs. Moreover, a clutch filled by an MRF with higher particle content can transmit higher torques. It is also concluded that increasing the clutch’s radii is an easier way to improve the mean torque while altering the applied magnetic field is a better way to adjust the range of achievable torques. The simulations also demonstrate the importance of an accurate and reliable constitutive model in the design of MR devices. It is shown that Bingham model is not reliable at high magnetic fields as it underestimates the transmitted torque though calibrated at each field intensity. However, the employed nonlinear model provides more reliable results by only being calibrated at an arbitrary field.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3