Analysis of Thin-Walled Beams via a One-Dimensional Unified Formulation Through a Navier-Type Solution

Author:

Giunta Gaetano1,Biscani Fabio12,Carrera Erasmo2,Belouettar Salim1

Affiliation:

1. Advanced Materials and Structures Department, 29 av. John F. Kennedy, Centre de Recherche Public Henri Tudor, L-1855, Luxembourg-Kirchberg, Luxembourg

2. Aeronautic and Space Engineering Department, 24, c.so Duca degli Abruzzi, Politecnico di Torino, 10129 Turin, Italy

Abstract

A unifying approach to formulate several axiomatic theories for beam structures is addressed in this paper. A [Formula: see text]-order polynomials approximation is assumed on the beam cross-section for the displacement unknown variables, being [Formula: see text] a free parameter of the formulation. Classical beam theories, such as Euler–Bernoulli’s and Timoshenko’s, are obtained as particular cases. According to the proposed unified formulation, the governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the approximation order. The linear static analysis of thin-walled beams is carried out through a closed form, Navier-type solution. Simply supported beams are, therefore, presented. Box, C- and I-shaped cross-sections are accounted for. Slender and deep beams are investigated. Bending and torsional loadings are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigation has shown that the proposed unified formulation yields the complete three-dimensional displacement and stress fields for each cross-section as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam and the loading conditions.

Funder

Fonds National de la Recherche of Luxembourg

AFR

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3