Global Dynamics of Pipes Conveying Pulsating Fluid in the Supercritical Regime

Author:

Zhou Sha1,Yu Tian-Jun1,Yang Xiao-Dong1,Zhang Wei1

Affiliation:

1. Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

Global dynamics of supercritical pipes conveying pulsating fluid considering superharmonic resonance of the second mode with 1:2 internal resonance are investigated. The governing partial differential equations in the supercritical regime are obtained based on the nontrivial equilibrium configuration of the pipes conveying fluid and then transformed into a discretized nonlinear gyroscopic system via assumed modes and Galerkin’s method. The method of multiple scales and canonical transformation are applied to reduce the equations of motion to the near-integrable Hamiltonian standard form. The energy-phase method is employed to demonstrate the existence of chaotic dynamics by identifying the existence of multi-pulse jumping orbits in the perturbed phase space. The global solutions are subsequently interpreted in terms of the physical motion of such gyroscopic system. Two types of nonlinear normal modal motion and the chaotic pattern conversion between the locked simple bidirectional traveling wave motion and the complex bidirectional traveling wave motion are discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3