Effects of Speed and Posture on Aerodynamic Characteristics of Running and Required Power

Author:

Kim Jihoon12,Lee Sinyoung1,Ho Van-Thanh3,Shin Dongjun4,Ryu Jaiyoung13ORCID

Affiliation:

1. Department of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

2. Department of Mechanical and Aerospace Engineering, University of California, Irvine, 4200 Engineering Gateway, Irvine, USA

3. Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea

4. Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea

Abstract

Types of running vary from jogging in parks to fast running in competitions. Humans strive for faster, stronger, and more sustainable running performances spanning short to long distances. In the near future, wearable devices will enable humans to run at high speeds and overcome human limits. Therefore, aerodynamic prediction is essential for the system design of a wearable device. This study focused on the aerodynamic drag and flow field according to the assumed human posture at takeoff and touchdown for various running speeds. Numerical simulations were conducted with the Reynolds-averaged Navier–Stokes equation, and a mathematical model, in conjunction with the use of simple geometric models, was developed to predict the aerodynamic drag. In addition, the power and energy were analyzed based on the generated aerodynamic drag. This study demonstrated the theoretical prediction of aerodynamic drag, and estimated the power and energy required to overcome it. The results from this study can be useful in the fields of sports, soft robotics, and biomechanics. Furthermore, the effects of wearable devices attached to the body on the aerodynamic drag can be analyzed by applying the presented methods, and this analysis is beneficial for the optimal design of wearable suits.

Funder

Ministry of Trade, Industry and Energy

Chung-Ang University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of eccentricity in tube–pod arrangements on hyperloop aerodynamics;International Journal of Mechanical Sciences;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3