ANALYTICAL MODEL TO DETERMINE RESPONSE AMPLITUDE OPERATOR OF A FLOATING BODY FOR COUPLED ROLL AND YAW MOTIONS AND FREQUENCY-BASED ANALYSIS

Author:

BAGHFALAKI M.1,DAS SAMIR K.2,DAS S. N.3

Affiliation:

1. Department of Mathematics, University of Pune, Pune 411007, India

2. Defence Institute of Advanced Technology, Girinagar, Pune 411025, India

3. Central Water and Power Research Station, Khadakwasla, Pune 411024, India

Abstract

The paper deals with the mathematical modeling of response amplitude operator (RAO) and frequency-based analysis for coupled roll and yaw motions in regular waves. Prior to obtaining the RAO expressions for linearly coupled conditions, hydrodynamic coefficients are computed by using the strip theory formulation. We consider sinusoidal wave with frequency (ω) varying between 0.3 rad/s and 1.2 rad/s acts on beam to the floating body for zero forward speed. Two limiting cases corresponding to ω → 0 and ω → ∞ are considered and general expressions of RAO for intermediate frequencies are derived. Analytical result shows that the norm of RAO is maximum when ω ≈ ωn≈ 0.74 for coupled roll and yaw motions. The asymptotic convergence of real part, imaginary part and norm of uncoupled yaw transfer functions are noticed with the increase of wave frequency. Using the normalization procedure and frequency based analysis; group based equations are formulated for each case. To understand the relative importance of the hydrodynamic coefficients, analytical solutions are obtained. The sensitivity analysis with respect to the initial conditions is investigated for roll and yaw motions. This study could be useful to model the floating body dynamics and corresponding wave loads in the design stage.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3