Experimental Investigation on the Performance of Signal Processing Tools for the Analysis of Mechanical Vibrations in Rotor Rubbing

Author:

Rubio Eduardo1,Chávez-Olivares César1,Cervantes-Herrera Alejandro1

Affiliation:

1. Center of Engineering Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, Aguascalientes, Ags., 20131, México

Abstract

Rubbing is an important problem in machinery industry which occurs when a rotating element hits a stationary part. This rotor-to-stator rub may result in the catastrophic breakdown of the machine. In this work, the phenomenon of rotor rubbing is analyzed from the perspective that the signal analysis tools that are in use today to detect this defect emphasize or highlight particular aspects of the studied phenomenon. So, sometimes it is necessary to use more than one tool to deepen the understanding of the problem. For this purpose, laboratory tests were performed on a rotor system with a rubbing mechanism, while mechanical vibrations were measured with an accelerometer and a data acquisition system. Experiments were carried out for fixed rotor speed, and for run-up and run-down rotor speed conditions. The analysis approach included various processing tools to study their capabilities in rubbing detection: Root Mean Square (RMS), Fourier transform, Wavelet transform and Hurst exponent. Fixed rubbing conditions show similar results for RMS and Hurst exponent on the information obtained. For variable run-up and run-down rotor speed conditions, the Hurst exponent shows predictability, a fact that can be used for rub detection. However, the Wavelet and Fourier Transforms operated in a very distinct way. Although both transforms give frequency information, Fourier transform results in a more detailed frequency analysis, while the Wavelet transform can give time localization of the rubbing phenomenon.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3