Recent Advances of the Constitutive Models of Smart Materials — Hydrogels and Shape Memory Polymers

Author:

Huang Rong1,Zheng Shoujing1,Liu Zishun1,Ng Teng Yong2

Affiliation:

1. International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, P. R. China

2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

Hydrogels and shape memory polymers (SMPs) possess excellent and interesting properties that may be harnessed for future applications. However, this is not achievable if their mechanical behaviors are not well understood. This paper aims to discuss recent advances of the constitutive models of hydrogels and SMPs, in particular the theories associated with their deformations. On the one hand, constitutive models of six main types of hydrogels are introduced, the categorization of which is defined by the type of stimulus. On the other hand, constitutive models of thermal-induced SMPs are discussed and classified into three main categories, namely, rheological models; phase transition models; and models combining viscoelasticity and phase transition, respectively. Another feature in this paper is a summary of the common hyperelastic models, which can be potentially developed into the constitutive models of hydrogels and SMPs. In addition, the main advantages and disadvantages of these constitutive modes are discussed. In order to provide a compass for researchers involved in the study of mechanics of soft materials, some research gaps and new research directions for hydrogels and SMPs constitutive modes are presented. We hope that this paper can serve as a reference for future hydrogel and SMP studies.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3