THREE-DIMENSIONAL PRESSURE-DEPENDENT ELASTOPLASTIC COSSERAT CONTINUUM MODEL AND FINITE ELEMENT SIMULATION OF STRAIN LOCALIZATION

Author:

TANG HONGXIANG12,HU ZHAOLONG1,LI XIKUI3

Affiliation:

1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Abstract

A pressure-dependent elastoplastic Cosserat continuum model for three-dimensional problems is presented in this paper. The nonassociated Drucker–Prager yield criterion is particularly considered. Splitting the scalar product of the stress rate and the strain rate into the deviatoric and the spherical parts, the consistent algorithm of the pressure-dependent elastoplastic model is derived in the three-dimensional framework of Cosserat continuum theory, i.e., the return mapping algorithm for the integration of the rate constitutive equation and the closed form of the consistent elastoplastic tangent modulus matrix. The matrix inverse operation usually required in the calculation of elastoplastic tangent constitutive modulus matrix is avoided, that ensures the second order convergence rate and the computational efficiency of the model in numerical solution procedure. A comparison is performed between the classical and Cosserat continuum model through the numerical results of three-dimensional shear structure, tensile specimen, footing on a soil foundation, and soil slope stability. It illustrates that mesh dependency and numerical difficulties exist in classical model, while Cosserat model possesses the capability and performance in keeping the well-posedness of the boundary value problems with strain softening behavior incorporated. The relationship between the internal length scale and the width of shear band and the load-carrying capability of the structure has also been demonstrated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3