FLEXURAL RIGIDITY OF THIN AUXETIC PLATES

Author:

LIM TEIK-CHENG1

Affiliation:

1. School of Science and Technology, SIM University, Singapore

Abstract

The influence of auxeticity on the mechanical behavior of isotropic plates is considered herein by evaluating the plate flexural rigidity as the Poisson's ratio changes from 0.5 to -1. Since the change in plate's Poisson's ratio is followed by a change in at least one of the three moduli, any resulting change to the plate flexural rigidity is only meaningful when at least one of the moduli is held constant. This was performed by normalizing the plate flexural rigidity by a single modulus, a square root of two moduli product, or a cube root of three moduli product to give a dimensionless plate flexural rigidity. It was found that the plate flexural rigidity decreases to a minimum as the plate Poisson's ratio decreases from 0.5 to 0 when only the Young's modulus is held constant. Thereafter the plate flexural rigidity increases with the plate auxeticity. Results also reveal that when only the shear modulus or when the bulk modulus is held constant, the plate flexural rigidity decreases or increases, respectively, with the plate auxeticity. Intermediate trend in the plate flexural rigidity is observed when the product of two moduli is held constant. When the product of all three moduli is held constant, the plate flexural rigidity increases with the plate auxeticity, and the change is especially drastic when the plate Poisson's ratio is near to the upper and lower limits of Poisson's ratio for isotropic solids. Results from this work are useful for structural designers to control the flexural rigidity of plate made from auxetic materials.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An analytical investigation of elastic–plastic behaviors of 3D warp and woof auxetic structures;International Journal of Mechanics and Materials in Design;2021-05-18

2. Maximum Stresses in Rectangular Auxetic Membranes;physica status solidi (b);2020-06-30

3. Thin Auxetic Plates;Mechanics of Metamaterials with Negative Parameters;2020

4. A Reinforced Kite-Shaped Microstructure with Negative Linear and Area Hygrothermal Expansions;Key Engineering Materials;2019-05

5. A Negative Hygroscopic Expansion Material;Materials Science Forum;2018-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3