Realization of Artificial Nonlinear Spring with Controllable Stiffness

Author:

Kassem Mohammed1,Yang Zhichun1,Gu Yingsong1,Wang Wei1,Safwat Ibrahim M.1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, 127 West Youyi Road, Xian, Shaanxi 710072, P. R. China

Abstract

Traditionally, nonlinear stiffness is achieved using mechanical components designed for a specific structure under certain loading conditions. In the present paper, the desired stiffness nonlinearity with various controlled stiffness values is obtained using smart materials. A prototype nonlinear spring is designed by a cantilever beam with bonded macro-fiber composite (MFC). The novel active prototype is modeled, simulated and experimentally validated to realize the artificial nonlinear spring (ANS) approach. To characterize the dynamic behavior of the proposed MFC-beam system, a dynamic linearized model is identified using a fourth order transfer function. Proportional integral (PI) controller is implemented to achieve the required spring stiffness function. According to the applied load estimation technique, three models are used to control the nonlinear stiffness. The results show precise nonlinear responses to measurable static and quasi-static external loads. Unmeasurable loads are real-time estimated and adequately responded. Both softening and hardening springs with a wide range of nonlinear stiffness values are obtained and tuned according to the demands. The proposed approach widens the application range of nonlinear springs and improves their performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active dynamic vibration absorber for flutter suppression;Journal of Sound and Vibration;2020-03

2. Enhanced Dynamic Vibration Absorber for Flutter Control;AIAA Scitech 2020 Forum;2020-01-05

3. Design and Manufacture of a Smart Macro-Structure with Changeable Effective Stiffness;International Journal of Applied Mechanics;2020-01

4. Active Damping of Milling Vibration Using Operational Amplifier Circuit;Chinese Journal of Mechanical Engineering;2018-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3