Affiliation:
1. School of Civil Engineering, Central South University, Changsha 410083, P. R. China
2. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
Abstract
An improved time integration scheme is proposed for linear and nonlinear dynamics. The proposed scheme has two free parameters which control numerical dissipation and accuracy effectively. Basic properties including spectral stability, algorithmic accuracy, algorithmic damping, period elongation and overshooting behavior are investigated. The influences of algorithmic parameters on these properties are quantified. The effectiveness of the proposed scheme for linear and nonlinear dynamics is evaluated through some numerical examples. Analytical and numerical results demonstrate that the proposed scheme has the following significant characteristics: (1) desirable accuracy can be obtained for various linear and nonlinear problems, when compared with other effective schemes; (2) for nonlinear problems, new scheme also shows good performance; (3) the proposed scheme has simple formulation and good compatibility for various dynamic problems, and thus, is a promising candidate for practical analysis.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献