A Mid-Node Mass Lumping Scheme for Accurate Structural Vibration Analysis with Serendipity Finite Elements

Author:

Hou Songyang1,Li Xiwei1,Wang Dongdong1,Lin Zhiwei1

Affiliation:

1. Department of Civil Engineering and Xiamen Engineering, Technology Center for Intelligent Maintenance of Infrastructures, Xiamen University, Xiamen, Fujian 361005, P. R. China

Abstract

A mid-node mass lumping scheme is proposed to formulate the lumped mass matrices of serendipity elements for accurate structural vibration analysis. Since the row-sum technique leads to unacceptable negative lumped mass components for serendipity elements, the diagonal scaling HRZ method is frequently employed to construct lumped mass matrices of serendipity elements. In this work, through introducing a lumped mass matrix template that includes the HRZ lumped mass matrix as a special case, an analytical frequency accuracy measure is rationally derived with particular reference to the classical eight-node serendipity element. The theoretical results clearly reveal that the standard HRZ mass matrix actually does not offer the optimal frequency accuracy in accordance with the given lumped mass matrix template. On the other hand, by employing the nature of non-negative shape functions associated with the mid-nodes of serendipity elements, a mid-node lumped mass matrix (MNLM) formulation is introduced for the mass lumping of serendipity elements without corner nodal mass components, which essentially corresponds to the optimal frequency accuracy in the context of the given lumped mass matrix template. Both theoretical and numerical results demonstrate that MNLM yields better frequency accuracy than the standard HRZ lumped mass matrix formulation for structural vibration analysis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3