Finite Deformations of an Elastic Cylinder During Indentation

Author:

Astapov Yuri1,Khristich Dmitrii1

Affiliation:

1. Department of Computational Mechanics and Mathematics, Tula State University, 92, pr. Lenina, Tula 300012, Russia

Abstract

The problem about the indentation of the rigid spherical stamp into the cylindrical specimen was considered. The material of the specimen was assumed to be weakly compressible. The formulation of the problem was performed for the case of finite deformations. The method of construction of the constitutive relations in terms of logarithmic strain tensor for elastic media and the variant of the algorithm to take into account the variation of the contact zone were proposed. The expansion of Hencky tensor and its time derivative into the series in powers of Cauchy strain tensor were used to calculate correctly the components of these tensors. Within the indentation problem, we used the model of nonlinear elastic material which provides the best agreement between numerical solution and experimental data among other used types of constitutive relations including various elastic and hypoelastic models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concretization of nonlinear constitutive relations by results of uniaxial compression and indentation experiments;Journal of Physics: Conference Series;2021-05-01

2. The Effect of the Size of the Sample on Results of Indentation Tests;Materials Science Forum;2020-05

3. The influence of the scale factor on results of indentation tests;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019;2020

4. The Physically Nonlinear Model of an Elastic Material and Its Identification;International Journal of Applied Mechanics;2019-08

5. Experimental determination of the parameters of the nonlinearly elastic Hencky model;Journal of Physics: Conference Series;2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3