In Vivo Measurement of the Mechanical Properties of Facial Soft Tissue Using a Bi-Layer Material Model

Author:

Wei Huixin1,Liu Xuliang1,Dai Anna1,Li Linan1,Li Chuanwei1,Wang Shibin1,Wang Zhiyong1ORCID

Affiliation:

1. Department of Mechanics, Tianjin University, Tianjin 300350, P. R. China

Abstract

In vivo characterization of facial soft tissue is of great significance for facial plastic surgery, animation and dermatology. This paper presents an in vivo experimental method to characterize the macroscopic mechanical properties of facial soft tissue. In this method, a bi-layer material (BLM) model is established with the skeleton as the substrate under the facial soft tissue and the relationship between the mechanical properties of soft tissue and force–displacement curve is obtained. A novel indentation apparatus is also developed to experimentally measure the force-displacement curve of the facial soft tissue in vivo. Using the apparatus, experiments were conducted on artificial skins to verify the theoretical model. Experiments on facial soft tissue were finally conducted on four volunteers to obtain Young’s moduli at five facial locations using an optimal indenter whose radius is determined by the verification experiment. Our experiment results indicate that a slight difference is observed in Young’s moduli of facial soft tissue among different volunteers and indentation location. At locations of the left-hand cheek near the lips (NE) and center of the left-hand jaw (CJ), Young’s moduli [Formula: see text] are relatively large ranging from 2.653[Formula: see text]kPa to 4.437[Formula: see text]kPa. Nevertheless, at other locations of the center of the cheek (CC), left-hand zygomatic region (ZYG) and left-hand cheek near the lips (NL), the contact forces are smaller, and Young’s moduli [Formula: see text] are between 1.649[Formula: see text]kPa and 3.395[Formula: see text]kPa.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3