MICROPOLAR FLUID MODEL FOR BLOOD FLOW THROUGH A STENOSED ARTERY

Author:

ASADI H.1,JAVAHERDEH K.1,RAMEZANI S.1

Affiliation:

1. Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran

Abstract

Various experimental observations have demonstrated that the classical fluid theory is incapable of explaining many phenomena at micro and nano scales. On the other hand, micropolar fluid dynamics can naturally pick up the physical phenomena at these scales owing to its additional degrees of freedom caused by incorporating the effects of fluid molecules on the continuum. Therefore, one of the aims of this paper is to investigate the applicability of the theory of micropolar fluids to modeling and calculating flows in circular microchannels depending on the geometrical dimension of the flow field. Hence, a finite element formulation for the numerical analysis of micropolar laminar fluid flow is developed. In order to validate the results of the FE formulation, the analytical and exact solution of the micropolar Hagen–Poiseuille flow in a circular microchannel is presented, and an excellent agreement between the results of the analytical solution and those of the FE formulation is observed. It is also shown that the micropolar viscosity and the length scale parameter have significant roles on changing the flow characteristics. Then, the behavior of an incompressible viscous fluid flow such as blood flow in a stenosed artery, having multiple kinds of stenoses, is investigated. The obtained results are compared to the results reported in the literature, and an excellent agreement is observed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3