Affiliation:
1. Laboratory of Applied Numerical Geophysics, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia
Abstract
A seismic survey is perhaps the most common geophysical technique used to locate potential oil and natural gas deposits in the geologic structures. Thanks to the rapid development of modern high-performance computing systems, the computer simulation technology plays a crucial role in processing the field data. The precision of the full-waveform inversion (FWI) essentially depends on the quality of the direct problem solver. This paper introduces a new approach to the numerical simulation of wave processes in complex heterogeneous media. The linear elasticity theory is applied to simulate the dynamic behavior of curvilinear geological layers. In contrast to the conventional approach, the producing oil formation is described in the frame of a porous fluid-filled model. It allows us to explicitly take into account the porosity, oil density, and other physical parameters. The method of setting the physically correct contact conditions between the reservoir and the geological massif based on the transport equation solution for Riemann invariants was successfully implemented. The grid-characteristic method, previously thoroughly verified on acoustic and elastic problems, was adopted. The explicit time-stepping procedure was derived for a two-dimensional case with a method of splitting along coordinate axes. This method guarantees the preservation of the scheme approximation order. The potential application of the new method to a complex model based on the data from the famous Russian oil deposit — the Bazhen Formation — is demonstrated. The seismic responses were registered on the wave fields and synthetic seismograms. The novelty of this paper relates to a uniform approach to the wave propagation simulation in the heterogeneous medium containing contacting subdomains with different rheology types.
Funder
Russian Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献