Affiliation:
1. State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
2. The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P. R. China
Abstract
The biomechanical health degree of peri-implant bone plays a critical role during the service of implants. This paper presents a preliminary exploration of the quantitative evaluation of the biomechanical health degree for the bone tissues around dental implant through finite element method. The finite element model of a part of mandible with three molars is constructed based on computer tomography scan image as a control sample, which is supposed to represent a healthy state. The model of treated mandible is made by replacing the middle tooth in the healthy model with a commercial implant. A regional average strain energy density (RASED) is proposed as a more accurate index to describe the stress state of peri-implant bone tissues, compared with the widely used maximum equivalent von Mises stress. The simulation shows that the stress state in peri-implant bone, i.e., the distribution and level of stress, is highly dependent on the modulus of implant material. Among the implants made of materials with various moduli, including Ti, stainless steel, zirconia, porous Ti, dentin material and polyether-ether-ketone (PEEK), the ones with medium modulus (15–40[Formula: see text]GPa) are found to achieve relatively healthy stress states. This study provides an effective tool to assess the risk of overloading or stress shielding in peri-implant bone tissues. It demonstrates a great potential in the optimization of design, production and usage of implants.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献