Thermo-Elasto-Plastic Analysis of Thick-Walled Spherical Pressure Vessels Made of Functionally Graded Materials

Author:

Mazarei Zeinab1,Nejad Mohammad Zamani1,Hadi Amin2

Affiliation:

1. Mechanical Engineering Department, Yasouj University, P. O. Box 75914-353, Yasouj, Iran

2. Mechanical Engineering Faculty, University of Tehran, Tehran, Iran

Abstract

An exact closed-form analytical solution is presented to solve the thermo-elasto-plastic problem of thick-walled spherical vessels made of functionally graded materials (FGMs). Assuming that the inner surface is exposed to a uniform heat flux, and that the outer surface is exposed to an airstream. The heat conduction equation for the one-dimensional problem in spherical coordinates is used to obtain temperature distribution in the sphere. Material properties are graded in the thickness direction according to a power law distribution, whereas the Poisson’s ratio is kept constant. The Poisson’s ratio due to slight variations in engineering materials is assumed constant. The plastic model is based on von Mises yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. For various values of inhomogeneity constant, the so-obtained solution is then used to study the distribution of limit heat flux, displacement and stresses versus the radial direction. Moreover, the effect of increasing the heat flux and pressure on the propagation of the plastic zone are investigated. Furthermore, the effect of change in Poisson’s ratio on the value of the critical material parameter is demonstrated. The present study is also validated by comparing the numerical results for thick elasto-plastic spherical shells available in the literature. To the best of the authors’ knowledge, in previous studies, exact thermo-elasto-plastic behavior of FGM thick-walled sphrical pressure vessels has not investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3