Thermodynamic Constitutive Model of the Gas Hydrate-Bearing Sediments Considering Anisotropy

Author:

Liu Lei1ORCID,Zhou Bo1ORCID,Zhu Xiuxing1ORCID,Wang Haijing1ORCID,Huang Yun2ORCID

Affiliation:

1. College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China

2. Drilling Engineering Company Limited, CNPC Chuanqing, Chengdu 610051, P. R. China

Abstract

Gas hydrate-bearing sediments (GHBS) are considered a significant potential energy source. However, the decomposition of hydrates can lead to various geological hazards. Therefore, a comprehensive investigation into the mechanical properties of GHBS is essential to ensure the safe extraction of gas hydrate. This paper presents a constitutive model for GHBS that incorporates anisotropy, based on the theory of thermodynamics. To account for the effects of hydrate filling and cementing, two parameters are introduced into the dissipation function of the model. The filling effect is expressed through the densification mechanism, which increases the density of the host sediment. The cementing effect is represented by the enhanced expansion of the yield surface. The yield function incorporates the spacing ratio [Formula: see text] and the teardrop shape parameter [Formula: see text], which govern the shape of the yield surface, as well as the anisotropy angle [Formula: see text], which signifies the anisotropic evolution law. The physical significance of these parameters is also elucidated. The anisotropic evolution is described by an exponential function. The proposed model is compared to both the test results and the existing constitutive model, and it is found that it provides more accurate predictions of the mechanical properties of GHBS.

Funder

Independent Innovation Research Program of China University of Petroleum

National Key Research and Development Program of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3