Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid

Author:

Khudayarov B. A.1,Komilova KH. M.1,Turaev F. ZH.1

Affiliation:

1. Department of Higher Mathematics, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent 100000, Uzbekistan

Abstract

Vibration problems of pipelines made of composite materials conveying pulsating flow of gas and fluid are investigated in the paper. A dynamic model of motion of pipelines conveying pulsating fluid flow supported by a Hetenyi’s base is developed taking into account the viscosity properties of the structure material, axial forces, internal pressure and Winkler’s viscoelastic base. To describe the processes of viscoelastic material strain, the Boltzmann–Volterra integral model with weakly singular hereditary kernels is used. Using the Bubnov–Galerkin method, the problem is reduced to the study of a system of ordinary integro-differential equations (IDE). A computational algorithm is developed based on the elimination of the features of IDE with weakly singular kernels, followed by the use of quadrature formulas. The effect of rheological parameters of the pipeline material, flow rate and base parameters on the vibration of a viscoelastic pipeline conveying pulsating fluid is analyzed. The convergence analysis of the approximate solution of the Bubnov–Galerkin method is carried out. It was revealed that the viscosity parameters of the material and the pipeline base lead to a significant change in the critical flow rate. It was stated that an increase in excitation coefficient of pulsating flow and the parameter of internal pressure leads to a decrease in the critical flow rate. It is shown that an increase in the singularity parameter, the Winkler base parameter, the rigidity parameter of the continuous base layer and the Reynolds number increases the critical flow rate.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Characteristics of Pressure-Balanced Metal Bellows in Fluid–Structure Interaction;International Journal of Structural Stability and Dynamics;2024-08-27

2. Research on the flow-induced vibration characteristics based on heat–fluid–structure coupling in natural gas loop;AIP Advances;2023-12-01

3. Natural vibration of pipes conveying high-velocity fluids with multiple distributed retaining clips;Nonlinear Dynamics;2023-08-29

4. Improving the Mechanical Properties of the Air-Conditioning Pipe Using Composite Materials;Revue des composites et des matériaux avancés;2023-04-30

5. A review of the dynamics of composite tubes conveying fluid;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3