The Improved Interpolating Dimension Splitting Element-Free Galerkin Method for 3D Potential Problems

Author:

Meng Zhijuan1,Ma Yuye1,Chi Xiaofei1,Ma Lidong2ORCID

Affiliation:

1. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

Abstract

This paper proposes the improved interpolating dimension splitting element-free Galerkin (IIDSEFG) method based on the nonsingular weight function for three-dimensional (3D) potential problems. The core of the IIDSEFG method is to transform the 3D problem domain into a series of two-dimensional (2D) problem subdomains along the splitting direction. For the 2D problems on these 2D subdomains, the shape function is constructed by the improved interpolating moving least-squares (IIMLS) method based on the nonsingular weight function, and the finite difference method (FDM) is used to couple the discretized equations in the direction of splitting. Finally, the calculation formula of the IIDSEFG method for a 3D potential problem is derived. Compared with the improved element-free Galerkin (IEFG) method, the advantages of the IIDSEFG method are that the shape function has few undetermined coefficients and the essential boundary conditions can be executed directly. The results of the selected numerical examples are compared by the IIDSEFG method, IEFG method and analytical solution. These numerical examples illustrate that the IIDSEFG method is effective to solve 3D potential problems. The computational accuracy and efficiency of the IIDSEFG method are better than the IEFG method.

Funder

Young Scientists Fund

Natural Science Foundation of Shanxi Province

Shanxi Scholarship Council of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3