Affiliation:
1. Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2. Department of Mechanical Engineering, Islamic AZAD University, Ahvaz, Iran
Abstract
This paper introduces a novel approach for small-scale effects on nonlinear free-field vibration of a nano-disk using nonlocal elasticity theory. The formulation of a nano-disk is based on the nonlinear model of von Kármán strain in polar coordinates and classical plate theory. To analyze the nonlinear geometric and small-scale effects, the differential equation based on nonlocal elasticity theory was extracted from Hamilton principle, while the inertial and shear-stress effects were neglected. The equation of motion was discretized using the Galerkin method on selecting an appropriate function based on the boundary condition used for the nano-disk. Due to presence of nonlinear terms, the homotopy method was used in conjunction with the perturbation method (HPM) to ease up the solution and completely solve the problem. For further comparison, the nonlinear equations were solved by the fourth-order Runge–Kutta method, the solution of which was compared with that of HPM. Excellent agreements in results were observed between the two methods, indicating that the latter method can simplify the solution, and hence, can be applied to nonlinear nano-disk problems to seek their solution with a high accuracy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献