Nonlinear Vibration Analysis of Nano-Disks Based on Nonlocal Elasticity Theory Using Homotopy Perturbation Method

Author:

Shishesaz Mohammad1,Shariati Mojtaba1,Yaghootian Amin1,Alizadeh Ali2

Affiliation:

1. Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. Department of Mechanical Engineering, Islamic AZAD University, Ahvaz, Iran

Abstract

This paper introduces a novel approach for small-scale effects on nonlinear free-field vibration of a nano-disk using nonlocal elasticity theory. The formulation of a nano-disk is based on the nonlinear model of von Kármán strain in polar coordinates and classical plate theory. To analyze the nonlinear geometric and small-scale effects, the differential equation based on nonlocal elasticity theory was extracted from Hamilton principle, while the inertial and shear-stress effects were neglected. The equation of motion was discretized using the Galerkin method on selecting an appropriate function based on the boundary condition used for the nano-disk. Due to presence of nonlinear terms, the homotopy method was used in conjunction with the perturbation method (HPM) to ease up the solution and completely solve the problem. For further comparison, the nonlinear equations were solved by the fourth-order Runge–Kutta method, the solution of which was compared with that of HPM. Excellent agreements in results were observed between the two methods, indicating that the latter method can simplify the solution, and hence, can be applied to nonlinear nano-disk problems to seek their solution with a high accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3