Affiliation:
1. State Key Laboratory of Advanced Design and Manufacturer for Vehicle Body, Hunan University, Changsha, Hunan, P. R. China
Abstract
Compaction and the corresponding viscoelastic behaviors of woven fiber reinforcements are essential to determine the mechanical properties of composite components. Current reported works separately studied the viscoelastic behaviors in partial stage of the compaction process. In contrast, here, we propose a uniform viscoelastic model that can describe the viscoelastic responses in all stages. Systematical experiments of carbon and glass woven fiber reinforcements demonstrate the effectiveness of this viscoelastic model. Moreover, the significances of the model parameters and their underlying relations are clearly revealed. The time constants are not equal in different stages due to different roles of fiber friction played. The relationship among time constants in different stages is found and is experimentally demonstrated. Stress constants strongly depend on the initial stress and types of fiber reinforcements. The relationships between stress constants in all stages are also obtained. The proposed theoretical model here provides a potential and promising approach to understand the viscoelastic responses of woven fiber reinforcements in compaction process.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献