Application of a New Hybrid Immersed Boundary Method for the Simulation of Viscous Compressible Flows

Author:

Mousavinia S. A.1,Emdad Homayoun1

Affiliation:

1. Shiraz University, Department of Mechanical Engineering, Mollasadra Avenue, Shiraz 71936-16548, Iran

Abstract

In this paper, we present a hybrid immersed boundary method (HIBM) for the simulation of two- and three-dimensional compressible viscous flows around stationary and moving obstacles. The proposed approach combines the compressible boundary condition-enforced IBM proposed by Qiu et al. and the Brinkman penalization methods. The boundary condition-enforced IBM uses a fractional step approach alongside a Dirac delta function to satisfy the boundary conditions on the body surface. Although this method works properly in subsonic regimes, it cannot correctly simulate the wake region for a supersonic flow. On the other hand, the penalization method considers the body as a porous media with a low permeability that forces the velocity and energy inside the body to converge to the body velocity and energy. However, unlike the boundary condition-enforced IBM, the streamlines penetrate the body. In the present approach, the positive features of the above-mentioned methods were included and their drawbacks were excluded. The proposed approach was applied using the finite volume method and an E-CUSP scheme. The performance of the proposed method was numerically evaluated in simulating compressible fluid flow around both stationary and moving boundaries, showing a close agreement with other numerical and experimental data available in the literature. Further, the effects of geometry, Reynolds, and Mach numbers were investigated on the supersonic flow field around elliptical cylinders of various aspect ratios. The results revealed that increasing the aspect ratio led to an increase in the shock standoff distance, recirculation zone, and drag coefficient.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3