Properties Analysis of Disk Spring with Effects of Asymmetric Variable Friction

Author:

Chen Renzhen1,Li Xiaopeng2,Xu Jinchi2,Yang Zemin2,Yang Hexu2

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Shenyang 110819, P. R. China

2. Key Laboratory of Dynamics Reliability of Major Mechanical Equipment, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Shenyang 110819, P. R. China

Abstract

The primary objective of this fundamental research is to investigate the mechanical properties of the disk spring when the friction at the contact edges is asymmetric and varies with the load. The contact mechanics study shows that the static friction and static friction coefficient on fractal surfaces change depending on the normal load. In this paper, a fractal contact model based on the W-M function is used to explore the connection between the static friction and the normal load. Subsequently, taking into account the asymmetry of the contact surface at the edge, the variable static friction coefficient is brought into the existing model to obtain an improved static model of the disk spring. Different fractal dimensions, frictional states and free heights are considered under quasi-static loading condition, the relative errors between this paper and the method using Coulomb friction are also calculated, and experimental validation was performed. The static stiffness and force hysteresis of the disk spring for different forms of asymmetric variable friction are discussed. It is shown that using the variable friction model can improve the computational accuracy of the disk spring model under small loads and help to improve the design and control accuracy of preload and vibration isolation equipment using the disk spring as a component.

Funder

National Natural Science Foundation of China

National Key Research and Development Project of China

Natural Science Foundation of Ningxia Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3