Drying-Induced Pressure Rise and Fracture Mechanics Modeling of the Sphagnum Capsule

Author:

Kang Jingtian1,Liu Suixin1,Wang Changguo2

Affiliation:

1. Department of Mechanical Engineering, College of Sciences, Northeastern University, Shenyang 110819, P. R. China

2. National Key Laboratory of Science and Technology for National Defence on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, P. R. China

Abstract

The Sphagnum capsule can disperse spores at an extraordinarily high velocity and acceleration during drying. Briefly, the pressure rise induced by the decrease in the environmental humidity inside the spore chamber causes crack growth between the lid and the capsule wall. At a critical condition, the lid of the capsule suddenly fractures, and the top spores are propelled by the high pressure. Motivated by this phenomenon, we develop a similar mechanics model to study the drying-induced pressure rise and the fracture mechanism of the Sphagnum capsule in this paper. We investigate the drying-induced pressure rise and obtain the deformation configuration for various stiffness ratios of different parts. We also establish a fracture mechanics model and calculate the energy release rate to study the lid separation during the ejection of spores. We find that the energy release rate increases with crack growth when the crack is short, maximizes at an intermediate central crack angle of around [Formula: see text], and gradually decreases with further increase in the central crack depending on the loading type. Such a nonmonotonic relationship between the energy release rate and the crack length can be readily used to explain the spontaneously fast unsteady crack growth and the following potential crack arrest reported in the literature. The results and the modeling method obtained in this paper can be used to explain similar fracture-related spore launching of plants and design bioinspired structures to realize the drying-induced fast movement.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical and numerical solutions of pore formation in elastic food materials during dehydration;Current Research in Food Science;2024

2. Analysis and Prediction of Failure in FRP;Synthesis Lectures on Mechanical Engineering;2023

3. Introduction to Fiber-Reinforced Composites Materials;Synthesis Lectures on Mechanical Engineering;2023

4. Controllable bistable smart composite structures driven by liquid crystal elastomer;Smart Materials and Structures;2021-11-18

5. Numerical Prediction of Failure in Unidirectional Fiber Reinforced Composite;International Journal of Applied Mechanics;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3