Affiliation:
1. School of Mechano-Electronic Engineering, Xidian University, P. O. Box 188, Xi’an 710071, P. R. China
Abstract
Dynamic response analysis plays an important role for the structural design. For engineering structures, there exist model inaccuracies and structural parameters uncertainties. Consequently, it is necessary to express these uncertain parameters as interval variables and introduce the interval finite element method (IFEM), in which the elements in stiffness matrix, mass matrix and damping matrix are all the function of interval parameters. The dependence of interval parameters leads to overestimation of dynamic response analysis. In order to reduce the overestimation of IFEM, the element-based subinterval perturbation for static analysis is applied to dynamic response analysis. According to the interval range, the interval parameters are divided into different subintervals. With permutation and combination of each subinterval, the upper and lower bounds of displacement response are obtained. Because of the large number of degrees of freedom and uncertain parameters, the Laplace transform is used to evaluate the dynamic response for avoiding to frequently solve the interval finite element linear equations. The numerical examples illustrate the validity and feasibility of the proposed method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献