Affiliation:
1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China
Abstract
A graph G is said to be super edge connected (in short super – λ) if every minimum edge cut isolates a vertex of G. The Kronecker product of graphs G and H is the graph with vertex set V(G × H) = V(G) × V(H), where two vertices (u1, v1) and (u2, v2) are adjacent in G × H if u1u2 ∈ E(G) and v1v2 ∈ E(H). Let G be a connected graph, and let δ(G) and λ(G) be the minimum degree and the edge-connectivity of G, respectively. In this paper we prove that G × Kn is super-λ for n ≥ 3, if λ(G) = δ(G) and G ≇ K2. Furthermore, we show that K2 × Kn is super-λ when n ≥ 4. Similar results for G × Tn are also obtained, where Tn is the graph obtained from Kn by adding a loop to every vertex of Kn.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献