Degrees of Infinite Words, Polynomials and Atoms

Author:

Endrullis Jörg1,Karhumäki Juhani2,Klop Jan Willem13,Saarela Aleksi2

Affiliation:

1. Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

2. Department of Mathematics and Statistics & FUNDIM, University of Turku, Turku, Finland

3. Centrum Wiskunde & Informatica (CWI), Amsterdam, the Netherlands

Abstract

We study finite-state transducers and their power for transforming infinite words. Infinite sequences of symbols are of paramount importance in a wide range of fields, from formal languages to pure mathematics and physics. While finite automata for recognising and transforming languages are well-understood, very little is known about the power of automata to transform infinite words. The word transformation realised by finite-state transducers gives rise to a complexity comparison of words and thereby induces equivalence classes, called (transducer) degrees, and a partial order on these degrees. The ensuing hierarchy of degrees is analogous to the recursion-theoretic degrees of unsolvability, also known as Turing degrees, where the transformational devices are Turing machines. However, as a complexity measure, Turing machines are too strong: they trivialise the classification problem by identifying all computable words. Finite-state transducers give rise to a much more fine-grained, discriminating hierarchy. In contrast to Turing degrees, hardly anything is known about transducer degrees, in spite of their naturality. We use methods from linear algebra and analysis to show that there are infinitely many atoms in the transducer degrees, that is, minimal non-trivial degrees.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classifying all transducer degrees below N3;Journal of Logic and Computation;2022-09-21

2. Transducer degrees: atoms, infima and suprema;Acta Informatica;2019-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3