COMPUTING SHORTEST, FASTEST, AND FOREMOST JOURNEYS IN DYNAMIC NETWORKS

Author:

XUAN B. BUI1,FERREIRA A.2,JARRY A.3

Affiliation:

1. École Normale Supérieure de Lyon, 46 allée d'Italie, 69007 Lyon, France

2. CNRS – I3S & INRIA Sophia Antipolis, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France

3. I3S & INRIA Sophia Antipolis, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France

Abstract

New technologies and the deployment of mobile and nomadic services are driving the emergence of complex communications networks, that have a highly dynamic behavior. This naturally engenders new route-discovery problems under changing conditions over these networks. Unfortunately, the temporal variations in the network topology are hard to be effectively captured in a classical graph model. In this paper, we use and extend a recently proposed graph theoretic model, which helps capture the evolving characteristic of such networks, in order to propose and formally analyze least cost journey (the analog of paths in usual graphs) in a class of dynamic networks, where the changes in the topology can be predicted in advance. Cost measures investigated here are hop count (shortest journeys), arrival date (foremost journeys), and time span (fastest journeys).

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The complexity of computing optimum labelings for temporal connectivity;Journal of Computer and System Sciences;2024-12

2. Temporally connected components;Theoretical Computer Science;2024-10

3. Snapshot disjointness in temporal graphs;Theoretical Computer Science;2024-09

4. Temporal reachability minimization: Delaying vs. deleting;Journal of Computer and System Sciences;2024-09

5. Making Temporal Betweenness Computation Faster and Restless;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3