ON THE AVERAGE SIZE OF GLUSHKOV AND PARTIAL DERIVATIVE AUTOMATA

Author:

BRODA SABINE1,MACHIAVELO ANTÓNIO1,MOREIRA NELMA1,REIS ROGÉRIO1

Affiliation:

1. CMUP, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

Abstract

In this paper, the relation between the Glushkov automaton [Formula: see text] and the partial derivative automaton [Formula: see text] of a given regular expression, in terms of transition complexity, is studied. The average transition complexity of [Formula: see text] was proved by Nicaud to be linear in the size of the corresponding expression. This result was obtained using an upper bound of the number of transitions of [Formula: see text]. Here we present a new quadratic construction of [Formula: see text] that leads to a more elegant and straightforward implementation, and that allows the exact counting of the number of transitions. Based on that, a better estimation of the average size is presented. Asymptotically, and as the alphabet size grows, the number of transitions per state is on average 2. Broda et al. computed an upper bound for the ratio of the number of states of [Formula: see text] to the number of states of [Formula: see text] which is about ½ for large alphabet sizes. Here we show how to obtain an upper bound for the number of transitions in [Formula: see text], which we then use to get an average case approximation. In conclusion, assymptotically, and for large alphabets, the size of [Formula: see text] is half the size of the [Formula: see text]. This is corroborated by some experiments, even for small alphabets and small regular expressions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regular Expressions Avoiding Absorbing Patterns and the Significance of Uniform Distribution;International Journal of Foundations of Computer Science;2024-07-31

2. Average Complexity of Partial Derivatives for Synchronised Shuffle Expressions;Implementation and Application of Automata;2023

3. Manipulation of Regular Expressions Using Derivatives: An Overview;Implementation and Application of Automata;2022

4. On the size of partial derivatives and the word membership problem;Acta Informatica;2021-07-19

5. Random Regular Expression Over Huge Alphabets;International Journal of Foundations of Computer Science;2021-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3