Affiliation:
1. CMUP, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
Abstract
In this paper, the relation between the Glushkov automaton [Formula: see text] and the partial derivative automaton [Formula: see text] of a given regular expression, in terms of transition complexity, is studied. The average transition complexity of [Formula: see text] was proved by Nicaud to be linear in the size of the corresponding expression. This result was obtained using an upper bound of the number of transitions of [Formula: see text]. Here we present a new quadratic construction of [Formula: see text] that leads to a more elegant and straightforward implementation, and that allows the exact counting of the number of transitions. Based on that, a better estimation of the average size is presented. Asymptotically, and as the alphabet size grows, the number of transitions per state is on average 2. Broda et al. computed an upper bound for the ratio of the number of states of [Formula: see text] to the number of states of [Formula: see text] which is about ½ for large alphabet sizes. Here we show how to obtain an upper bound for the number of transitions in [Formula: see text], which we then use to get an average case approximation. In conclusion, assymptotically, and for large alphabets, the size of [Formula: see text] is half the size of the [Formula: see text]. This is corroborated by some experiments, even for small alphabets and small regular expressions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献