Sentiment Analysis of Chinese Reviews Based on BiTCN-Attention Model

Author:

Zhang Jiajing1ORCID,Zhang Tingting1,Chen Jinlan2ORCID

Affiliation:

1. School of Electronics and Information Engineering, Anhui Jianzhu University, Hefei 230601, China

2. School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

It is of great significance for individuals, enterprises, and government departments to analyze and excavate the sentiment in the comments. Many deep learning models are used for text sentiment analysis, and the BiTCN model has good efficacy on sentiment analysis. However, in the actual semantic expression, the contribution of each word to the sentiment tendency is different, BiTCN treats it fairly and does not pay more attention to the key sentiment words. For this problem, a sentiment analysis model based on the BiTCN-Attention is proposed in this paper. The Self-Attention mechanism and Multi-Head Self-Attention mechanism are added to BiTCN respectively to form BiTCN-SA and BiTCN-MHSA, which improve the weight of sentiment words and the accuracy of feature extraction, to increase the effect of sentiment analysis. The experimental results show that the model accuracies of BiTCN-SA and BiTCN-MHSA in the JingDong commodity review data set are 3.96% and 2.41% higher than that of BiTCN, respectively. In the comment data set of DianPing, the accuracy of BiTCN-SA and BiTCN-MHSA improved by 4.62% and 3.49%, respectively, compared with that of BiTCN.

Funder

the Provincial Quality Engineering Project of Anhui Province

the Quality Engineering Project of Anhui Jianzhu University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3