Affiliation:
1. Fb 6 - Mathematik und Informatik, Universität GHS Essen, D-4300 Essen 1, Germany
Abstract
We introduce an operational model of concurrent systems, called automata with concurrency relations. These are labeled transition systems [Formula: see text] in which the event set is endowed with a collection of symmetric binary relations which describe when two events at a particular state of [Formula: see text] commute. This model generalizes the recent concept of Stark’s trace automata. A permutation equivalence for computation sequences of [Formula: see text] arises canonically, and we obtain a natural domain [Formula: see text] comprising the induced equivalence classes. We give a complete order-theoretic characterization of all such partial orders [Formula: see text] which turn out to be particular finitary domains. The arising domains [Formula: see text] are particularly pleasant Scott-domains, if [Formula: see text] is assumed to be concurrent, i.e. if the concurrency relations of [Formula: see text] depend (in a natural way) locally on each other, but not necessarily globally. We show that both event domains and dI-domains arise, up to isomorphism, as domains [Formula: see text] with well-behaved such concurrent automata [Formula: see text]. We introduce a subautomaton relationship for concurrent automata and show that, given two concurrency domains (D, ≤), (D′, ≤), there exists a nice stable embedding-projection pair from D to D′ iff D, D′ can be generated by concurrent automata [Formula: see text] such that [Formula: see text] is a subautomaton of [Formula: see text]. Finally, we introduce the concept of locally finite concurrent automata as a limit of finite concurrent automata and show that there exists a universal homogeneous locally finite concurrent automaton, which is unique up to isomorphism.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献