VERIFYING VERY LARGE INDUSTRIAL CIRCUITS USING 100 PROCESSES AND BEYOND

Author:

FIX LIMOR1,GRUMBERG ORNA2,HEYMAN AMNON3,HEYMAN TAMIR1,SCHUSTER ASSAF2

Affiliation:

1. Logic and Validation Technology, Intel Corporation, Haifa, Israel

2. Computer Science Department, Technion, Haifa, Israel

3. Phonedo, Herzliya, Israel

Abstract

Recent advances in scheduling and networking have paved the way for efficient exploitation of large-scale distributed computing platforms such as computational grids and huge clusters. Such infrastructures hold great promise for the highly resource-demanding task of verifying and checking large models, given that model checkers would be designed with a high degree of scalability and flexibility in mind. In this paper we focus on the mechanisms required to execute a high-performance, distributed, symbolic model checker on top of a large-scale distributed environment. We develop a hybrid algorithm for slicing the state space and dynamically distribute the work among the worker processes. We show that the new approach is faster, more effective, and thus much more scalable than previous slicing algorithms. We then present a checkpoint-restart module that has very low overhead. This module can be used to combat failures, the likelihood of which increases with the size of the computing plat-form. However, checkpoint-restart is even more handy for the scheduling system: it can be used to avoid reserving large numbers of workers, thus making the distributed computation work-efficient. Finally, we discuss for the first time the effect of reorder on the distributed model checker and show how the distributed system performs more efficient reordering than the sequential one. We implemented our contributions on a network of 200 processors, using a distributed scalable scheme that employs a high-performance industrial model checker from Intel. Our results show that the system was able to verify real-life models much larger than was previously possible.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed BDD-Based Model Checking;Electronic Proceedings in Theoretical Computer Science;2011-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3