ON RECOGNIZABLE LANGUAGES OF INFINITE PICTURES

Author:

FINKEL OLIVIER1

Affiliation:

1. Equipe de Logique Mathématique, U.F.R. de Mathématiques, Université Paris 7, 2 Place Jussieu 75251 Paris cedex 05, France

Abstract

In a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for infinite words. The authors asked for comparing the tiling system acceptance with an acceptance of pictures row by row using an automaton model over ordinal words of length ω2. We give in this paper a solution to this problem, showing that all languages of infinite pictures which are accepted row by row by Büchi or Choueka automata reading words of length ω2are Büchi recognized by a finite tiling system, but the converse is not true. We give also the answer to two other questions which were raised by Altenbernd, Thomas and Wöhrle, showing that it is undecidable whether a Büchi recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable).

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Reference25 articles.

1. Tiling Systems over Infinite Pictures and Their Acceptance Conditions

2. N. Bedon, Finite Automata and Ordinals, Theoretical Computer Science 156 (1996) pp. 119–144.

3. Weak Second-Order Arithmetic and Finite Automata

4. J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic (Stanford University Press, 1962) pp. 1–11.

5. Lecture Notes in Mathematics;Büchi J. R.,1973

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. $$+\omega $$ + ω -Picture Languages Recognizable by Büchi-Tiling Systems;Language and Automata Theory and Applications;2016

2. The Complexity of Infinite Computations In Models of Set Theory;Logical Methods in Computer Science;2009-12-21

3. Highly Undecidable Problems For Infinite Computations;RAIRO - Theoretical Informatics and Applications;2009-02-14

4. Highly Undecidable Problems about Recognizability by Tiling Systems;Fundamenta Informaticae;2009

5. Traces, Series-Parallel Posets, and Pictures: A Weighted Study;Monographs in Theoretical Computer Science;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3