GENERAL ALGORITHMS FOR TESTING THE AMBIGUITY OF FINITE AUTOMATA AND THE DOUBLE-TAPE AMBIGUITY OF FINITE-STATE TRANSDUCERS

Author:

ALLAUZEN CYRIL1,MOHRI MEHRYAR21,RASTOGI ASHISH3

Affiliation:

1. Google Research, 76 Ninth Avenue, New York, NY 10011, US

2. Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, US

3. Goldman, Sachs & Co., 200 West Street, New York, NY 10282, US

Abstract

We present efficient algorithms for testing the finite, polynomial, and exponential ambiguity of finite automata with ε-transitions. We give an algorithm for testing the exponential ambiguity of an automaton A in time [Formula: see text], and finite or polynomial ambiguity in time [Formula: see text], where |A|E denotes the number of transitions of A. These complexities significantly improve over the previous best complexities given for the same problem. Furthermore, the algorithms presented are simple and based on a general algorithm for the composition or intersection of automata. Additionally, we give an algorithm to determine in time [Formula: see text] the degree of polynomial ambiguity of a polynomially ambiguous automaton A and present an application of our algorithms to an approximate computation of the entropy of a probabilistic automaton. We also study the double-tape ambiguity of finite-state transducers. We show that the general problem is undecidable and that it is NP-hard for acyclic transducers. We present a specific analysis of the double-tape ambiguity of transducers with bounded delay. In particular, we give a characterization of double-tape ambiguity for synchronized transducers with zero delay that can be tested in quadratic time and give an algorithm for testing the double-tape ambiguity of transducers with bounded delay.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3