ON THE COMPLEXITY OF COMPUTING OPTIMAL SOLUTIONS

Author:

CHEN ZHI-ZHONG,TODA SEINOSUKE1

Affiliation:

1. Department of Computer Science and Information Mathematics, University of Electro-Communications, Chofugaoka 1–5–1, Chufo-shi, Tokyo 182, Japan

Abstract

We study the computational complexity of computing optimal solutions (the solutions themselves, not just their cost) for NP optimization problems where the costs of feasible solutions are bounded above by a polynomial in the length of their instances (we simply denote by NPOP such an NP optimization problem). It is of particular interest to find a computational structure (or equivalently, a complexity class) which. captures that complexity, if we consider the problems of computing optimal solutions for NPOP’s as a class of functions giving those optimal solutions. In this paper, we will observe that [Formula: see text] the class of functions computable in polynomial-time with one free evaluation of unbounded parallel queries to NP oracle sets, captures that complexity. We first show that for any NPOP Π, there exists a polynomial-time bounded randomized algorithm which, given an instance of Π, uses one free evaluation of parallel queries to an NP oracle set and outputs some optimal solution of the instance with very high probability. We then show that for several natural NPOP’s, any function giving those optimal solutions is at least as computationally hard as all functions in [Formula: see text]. To show the hardness results, we introduce a property of NPOP’s, called paddability, and we show a general result that if Π is a paddable NPOP and its associated decision problem is NP-hard, then all functions in [Formula: see text] are computable in polynomial-time with one free evaluation of an arbitrary function giving optimal solutions for instances of Π. The hardness results are applications of this general result. Among the NPOP’s, we include MAXIMUM CLIQUE, MINIMUM COLORING, LONGEST PATH, LONGEST CYCLE, 0–1 TRAVELING SALESPERSON, and 0–1 INTEGER PROGRAMMING.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ancestors, descendants, and gardens of Eden in reaction systems;Theoretical Computer Science;2015-12

2. Preimage Problems for Reaction Systems;Language and Automata Theory and Applications;2015

3. Structure of Polynomial-Time Approximation;Theory of Computing Systems;2011-10-14

4. Quantum Optimization Problems;Unconventional Models of Computation;2002

5. Functions Computable with Nonadaptive Queries to NP;Theory of Computing Systems;1998-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3