A THREE-ROUND ADAPTIVE DIAGNOSTIC ALGORITHM IN A DISTRIBUTED SYSTEM MODELED BY DUAL-CUBES

Author:

CHEN JHENG-CHENG1,LAI CHIA-JUI1,TSAI CHANG-HSIUNG1

Affiliation:

1. Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C.

Abstract

Problem diagnosis in large distributed computer systems and networks is a challenging task that requires fast and accurate inferences from huge volumes of data. In this paper, the PMC diagnostic model is considered, based on the diagnostic approach of end-to-end probing technology. A probe is a test transaction whose outcome depends on some of the system's components; diagnosis is performed by selecting appropriate probes and analyzing the results. In the PMC model, every computer can execute a probe to test a dedicated system's components. Furthermore, any test result reported by a faulty probe station is unreliable and the test result reported by fault-free probe station is always correct. The aim of the diagnosis is to locate all faulty components in the system based on collection of the test results. A dual-cube DC(n) is an (n + 1)-regular spanning subgraph of a (2n + 1)-dimensional hypercube. It uses n-dimensional hypercubes as building blocks and returns the main desirable properties of the hypercube so that it is suitable as a topology for distributed systems. In this paper, we first show that the diagnosability of DC(n) is n + 1 and then show that adaptive diagnosis is possible using at most 22n+1 + n tests for a 22n+1-node distributed system modeled by dual-cubes DC(n) in which at most n + 1 processes are faulty. Furthermore, we propose an adaptive diagnostic algorithm for the DC(n) and show that it diagnoses the DC(n) in three testing rounds and at most 22n+1 + O(n3) tests, where each node is scheduled for at most one test in each round.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian cycle embedding with fault-tolerant edges and adaptive diagnosis in half hypercube;The Journal of Supercomputing;2023-10-04

2. Five-Round Adaptive Diagnosis in Hamiltonian Networks;IEEE Transactions on Parallel and Distributed Systems;2015-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3