SYNTHESIZING STATE-BASED OBJECT SYSTEMS FROM LSC SPECIFICATIONS

Author:

HAREL DAVID1,KUGLER HILLEL1

Affiliation:

1. Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel, 76100, Israel

Abstract

Live sequence charts (LSCs) have been defined recently as an extension of message sequence charts (MSCs; or their UML variant, sequence charts (MSCs; or their UML variant, sequence diagrams) for rich inter-object specification. One of the main additions is the notion of universal charts and hot, mandatory behavior, which, among other things, enables one to specify forbidden scenarios. LSCs are thus essentially as expressive as statecharts. This paper deals with synthesis, which is the problem of deciding, given an LSC specification, if there exists a satisfying object system and, if so, to synthesize one automatically. The synthesis problem is crucial in the development of complex systems, since sequence diagrams serve as the manifestation of use cases — whether used formally or informally — and if synthesizable they could lead directly to implementation. Synthesis is considerably harder for LSCs than for MSCs, and we tackle it by defining consistency, showing that an entire LSC specification is consistent iff it is satisfiable by a state-based object system, and them synthesizing a satisfying system as a collection of finite state machines or statecharts.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Relationship-Based Access Control Policies from Black-Box Systems;ACM Transactions on Privacy and Security;2022-05-19

2. Utilising Kronecker Algebra to Detect Unexpected Behaviour in Distributed Systems;2022 IEEE 25th International Symposium On Real-Time Distributed Computing (ISORC);2022-05-17

3. Automated conflict resolution for patients with multiple morbidity being treated using more than one set of single condition clinical guidance: A case study;Computers in Biology and Medicine;2022-05

4. GR(1)*: GR(1) specifications extended withexistential guarantees;Formal Aspects of Computing;2021-08

5. Synthesis of state machine models;Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems;2020-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3