Query Execution Time Analysis Using Apache Spark Framework for Big Data: A CRM Approach

Author:

Yadav Madan Lal1

Affiliation:

1. Indian Institute of Management Bodh Gaya, Bihar, India

Abstract

Customer Relationship Management (CRM) is a systematic way of working with current and prospective customers to manage long-term relationships and interactions between the company and customers. Recently, Big Data has become a buzzword. It consists of huge data repositories, having information collected from online and offline resources, and it is hard to process such datasets with traditional data processing tools and techniques. The presented research work tries to explore the potential of Big Data to create, optimise and transform an insightful customer relationship management system by analysing large amount of datasets for enhancing customer life cycle profitability. In this research work, a dataset, “Book Crossing” is used for Big Data processing and execution time analysis for simple and complex SQL queries. This research tries to analyse the impact of data size on the query execution time for one of the majorly used Big Data frameworks, namely Apache Spark. It is a recently developed in-memory Big Data processing framework with a SPARK SQL module for efficient SQL query execution. It has been found that Apache-Spark gives better results with large size datasets compare to small size datasets and fares better as compared to Hadoop, one of the majorly used Big Data Frameworks (based on qualitative analysis).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Improvement of Recommendation System Based on Spark Framework;2023 International Conference on Computer Simulation and Modeling, Information Security (CSMIS);2023-11-15

2. A Novel Multi-Task Performance Prediction Model for Spark;Applied Sciences;2023-11-11

3. The Effect of Big Data Capability and Market-Oriented Knowledge Integration on Product Speed-to-Market;Journal of Information & Knowledge Management;2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3