Building Self-Healing Feature Based on Faster R-CNN Deep Learning Technique in Web Data Extraction Systems

Author:

Patnaik Sudhir Kumar1ORCID,Narendra Babu C.1

Affiliation:

1. Department of Computer Science and Engineering, M.S. Ramaiah University of Applied Sciences, MSR Nagar, Bangalore, India

Abstract

Web data extraction has evolved over the years with extracting data from documents to today’s World Wide Web (WWW). The WWW growth has placed data at the centre of this ecosystem and benefited society at large, businesses and consumers. The proposed system uses deep learning technique, Faster region convolutional neural network (R-CNN) for automated navigation, extraction of data and self-healing of data extraction engine to adapt to dynamic changes in website layout. The proposed system trains the Faster R-CNN model for detection of product in the web page using bounding box image detection technique and extracts product details with high extraction accuracy. Deep learning technique has advanced rapidly in the different fields for image detection, but its application in data extraction makes this paper unique. An ecommerce retail website is used as real-world example to prove the self-healing capability of the proposed automated web data extraction system.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Predictive Model for Enterprise Development Capability Based on Deep Learning;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. Large data mixed attribute feature detection method based on Kalman algorithm;International Conference on Internet of Things and Machine Learning (IoTML 2023);2023-11-29

3. APPLICATION OF THE OPTIMISED YOLOv3 ALGORITHM IN SUBSTATION POWER EQUIPMENT DEFECT IDENTIFICATION AND DETECTION, 235-243.;Mechatronic Systems and Control;2023

4. Route Planning of Health Care Tourism Based on Computer Deep Learning;Wireless Communications and Mobile Computing;2022-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3