Adaptive Drift Detection Mechanism for Non-Stationary Data Stream

Author:

Nagendhiran Nalini1,Kuppusamy Lakshmanan1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632 014, India

Abstract

Mining is a challenging and important task in a non-stationary data stream. It is used in financial sectors, web log analysis, sensor networks, network traffic management, etc. In this environment, data distribution may change overtime and is called concept drift. So, it is necessary to identify the changes and address them to keep the model relevant to the incoming data. Many researchers have used Drift Detection Method (DDM). However, DDM is very sensitive to detect gradual drift where the detection delay is high. In this paper, we propose Adaptive Drift Detection Method (ADDM) which improves the performance of the drift detection mechanism. The ADDM uses a new parameter to detect the gradual drift in order to reduce the detection delay. The proposed method, ADDM, experiments with six synthetic datasets and four real-world datasets. Experimental results confirm that ADDM reduces the drift detection delay and false-positive rate (FPR) while preserving high classification accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3